竞彩足球app

欢迎访问 草业科学,今天是

HEIHEZHONGYOUSHIDIBUTONGZHIWUQUNLUOTURANGYOUJITANFENBUJIYINGXIANGYINSU

王園博 赵锐锋 张丽华 张晓雅

引用本文: 王園博,赵锐锋,张丽华,张晓雅. 黑河中游湿地不同植物群落土壤有机碳分布及影响因素. 草业科学, 2020, 37(5): 833-844 doi: 10.11829/j.issn.1001-0629.2019-0557 shu
Citation:  WANG Y B, ZHAO R F, ZHANG L H, ZHANG X Y. Soil organic carbon and its influencing factors on the different plant communities in the middle reaches of the Heihe River wetland. Pratacultural Science, 2020, 37(5): 833-844 doi: 10.11829/j.issn.1001-0629.2019-0557 shu

黑河中游湿地不同植物群落土壤有机碳分布及影响因素

    作者简介: 王園博(1994-),男,甘肃庆阳人,在读硕士生,主要从事资源环境与土地利用等研究。E-mail: ;
    通讯作者: 赵锐锋,
  • 基金项目: 国家自然科学基金项目(41261047、41761043);西北师范大学青年教师科研能力提升计划团队项目(NWNU\LKQN-17-7)

摘要: 湿地是全球碳循环重要组成部分之一,具有独特的生态环境效应和功能,对调节全球气候变化具有重要作用。本研究以黑河中游湿地为研究对象,基于实地采样数据、利用植物群落排序和结构方程模型等方法,分析不同植物群落土壤有机碳差异及影响因素。结果表明: 湿地不同植物群落间土壤有机碳存在显著差异(P < 0.05),土壤有机碳含量在3.56~4.30 g·kg –1,呈现明显的表聚现象;土壤有机碳主要受容重、pH、土壤全氮、土壤水分、土壤速效氮、土壤盐分、优势物种盖度、总多度、总盖度、非禾本科草本盖度多种因素的影响,表明造成土壤有机碳变化的因素较为复杂;土壤理化性质对土壤有机碳变化的贡献为0.55,植物群落特征对土壤有机碳变化的贡献为0.22,表明在黑河中游造成各植物群落土壤有机碳变化的主要原因是土壤理化性质差异;土壤理化性质对土壤有机碳的影响有两种不同路径,一是土壤理化性质对土壤有机碳的直接影响,二是pH、盐分通过影响总多度从而影响土壤有机碳,表明在土壤有机碳变化的过程中,不仅仅有各影响因素单纯的直接作用,也有影响因素之间的间接作用。该研究结果对干旱区湿地土壤有机碳固存具有一定的参考价值。

English

    1. [1]

      DAVIDSON E A, JANSSENS I A.  Temperature sensitivity of soil carbon decomposition and feedbacks to climate change[J]. Nature, 2006, 440(): 165-173. doi:

    2. [2]

      INUBUSHI K, FURUKAWA Y, HADI A, PURNOMOB E, TSURUTAC H.  Seasonal changes of CO2, CH4 and N2O fluxes in relation to landuse change in tropical peatlands located in coastal area of South Kalimantan[J]. Chemosphere, 2003, 52(): 603-608. doi:

    3. [3]

      ABRIL G, MARTINEZ J M, ARTIGAS L F, MOREIRA-TURCQ P, BENEDETTI M, VIDAL L, MEZIANE T, KIM J H, BERNARDES M C, SAVOYE N, DEBORDE J, SOUZA E L, ALBÉRIC P, MARCELO F, LANDIM DE SOUZA, ROLAND F.  Amazon River carbon dioxide outgassing fuelled by wetland[J]. Nature, 2014, 505(): 395-398. doi:

    4. [4]

      ISE T, DUNN A L, WOFSY S C, MOORCROFT R P.  High sensitivity of peat decomposition to climate change through water-table feedback[J]. Nature Geoscience, 2008, 1(11): 763-766. doi:

    5. [5]

      UTA S, MARK A A, JOHN W C, DAMIEN J F, NILUSHA H, MEAGHAN J, BUDIMAN M, ALEX B M, VIVIEN D R D C, KANIKA S, ICHSANI W, LYNETTE A.  The knowns, known unknowns and unknowns of sequestration of soil organic carbon[J]. Agriculture, Ecosystems & Environment竞彩足球app, 2013, 164(): 80-99.

    6. [6]

      MARY M, CHANGWOO A, ALICIA R K, LISA D W.  Carbon storage potential by four macrophytes as affected by planting diversity in a created wetland[J]. Journal of Environmental Management, 2016, 165(): 133-139.

    7. [7]

      FRY E L, LONG J R D, BARDGETT R D. Chapter 2: Plant communities as modulators of soil carbon storage. // Soil Carbon Storage, Modulators, Mechanisms and Modeling. Elsevier, 2018: 29-71.

    8. [8]

      IPCC. Fourth Assessment Report of the IPCC. Working Group III. Cambridge and New York: Cambridge University Press, 2007: 213-249.

    9. [9]

      TSOZUÉ, DÉSIRÉ, NGHONDA J P, TEMATIO P, BASGA D S.  Changes in soil properties and soil organic carbon stocks along an elevation gradient at Mount Bambouto, Central Africa[J]. Catena, 2019, 175(): 251-262. doi:

    10. [10]

      YAN J F, WANG L, HU Y, YIU F T, ZHANG Y N, WU J H, FU X H.  Plant litter composition selects different soil microbial structures and in turn drives different litter decomposition pattern and soil carbon sequestration capability[J]. Geoderma, 2018, 319(): 194-203. doi:

    11. [11]

      狄丽燕, 孔范龙, 王森, 李悦, 郗敏.  胶州湾滨海湿地凋落物分解对土壤有机碳矿化的影响研究[J]. 生态学报, 2019, 39(22): 8483-8493.
      DI L Y, KONG F L, WANG S, LI Y, XI M.  Effect of litter decomposition on mineralization of soil organic carbon in the Jiaozhou Bay coastal wetlands[J]. Acta Ecologica Sinica, 2019, 39(22): 8483-8493.

    12. [12]

      GONZÁLEZ-ALCARAZ M N, JIMÉNEZ-CÁRCELES F J, ÁLVAREZ Y, ÁLVAREZ-ROGEL J.  Gradients of soil salinity and moisture, and plant distribution, in a Mediterranean semiarid saline watershed: A model of soil-plant relationships for contributing to the management[J]. Catena竞彩足球app, 2014, 115(3): 150-158.

    13. [13]

      HU C, LI F, XIE Y H, DENG Z M.  Soil carbon, nitrogen, and phosphorus stoichiometry of three dominant plant communities distributed along a small-scale elevation gradient in the East Dongting Lake[J]. Physics and Chemistry of the Earth, Parts A/B/C, 2018, 103(): 28-34. doi:

    14. [14]

      张全军, 于秀波, 钱建鑫, 熊挺.  鄱阳湖南矶湿地优势植物群落及土壤有机质和营养元素分布特征[J]. 生态学报, 2012, 32(12): 3656-3669. doi:
      ZHANG Q J, YU X B, QIAN J X, XIONG T.  Distribution characteristics of plant communities and soil organic matter and main nutrients in the Poyang Lake Nanji Wetland[J]. Acta Ecologica Sinica, 2012, 32(12): 3656-3669. doi:

    15. [15]

      LI D F, SHAO M A.  Soil organic carbon and influencing factors in different landscapes in an arid region of northwestern China[J]. Catena, 2014, 116(): 95-104. doi:

    16. [16]

      龚月月, 朱新萍, 李典鹏, 郑梦竹, 杜婕, 孙涛.  不同土地利用方式下干旱区湿地土壤活性有机碳组分特征[J]. 草业科学, 2019, 36(8): 1944-1952.
      GONG Y Y, ZHU X P, LI D P, ZHENG M Z, DU J, SUN T.  Effect of land use type on the active organic carbon of wetland soil in an arid area[J]. Pratacultural Science竞彩足球app, 2019, 36(8): 1944-1952.

    17. [17]

      赵锐锋, 张丽华, 赵海莉, 姜朋辉, 汪建珍.  黑河中游湿地土壤有机碳分布特征及其影响因素[J]. 地理科学, 2013, 33(3): 363-370.
      ZHAO R F, ZHANG L H, ZHAO H L, JIANG P H, WANG J Z.  Distribution of soil organic carbon of wetlands in the middle reaches of the Heihe River and its influencing factors[J]. Scientia Geographica Sinica, 2013, 33(3): 363-370.

    18. [18]

      张勃, 毛彦成, 柳景峰.  黑河中游土地利用/覆盖变化驱动力的定量分析[J]. 干旱区地理, 2006, 29(5): 726-730. doi:
      ZHANG B, MAO Y C, LIU J F.  Analysis Driving Forces of LUCC in Heihe Middle Reaches[J]. Arid Land Geography, 2006, 29(5): 726-730. doi:

    19. [19]

      侯杰泰. 结构方程模型及其应用. 北京: 教育科学出版社, 2004.
      HOU J T. Structural Equation Model and Its Application. Beijing: Education Science Press, 2004.

    20. [20]

      向成华, 栾军伟, 骆宗诗, 宫渊波.  川西沿海拔梯度典型植被类型土壤活性有机碳分布[J]. 生态学报, 2010, 30(4): 1025-1034.
      XIANG C H, LUAN J W, LUO Z S, GONG Y B.  Labile soil organic carbon distribution on influenced by vegetation types a long an elevation gradient in west Sichuan, China[J]. Acta Ecologica Sinica竞彩足球app, 2010, 30(4): 1025-1034.

    21. [21]

      金奇, 吴琴, 钟欣孜, 胡佳, 胡启武.  鄱阳湖湿地水位梯度下不同植物群落类型土壤有机碳组分特征[J]. 生态学杂志, 2017, 36(5): 1180-1187.
      JIN Q, WU Q, ZHONG X Z, HU J, HU Q W.  Soil organic carbon and its components under different plant communities along a water table gradient in the Poyang Lake wetland[J]. Chinese Journal of Ecology, 2017, 36(5): 1180-1187.

    22. [22]

      徐广平, 李艳琼, 沈育伊, 张德楠, 孙英杰, 张中峰, 周龙武, 段春燕.  桂林会仙喀斯特湿地水位梯度下不同植物群落土壤有机碳及其组分特征[J]. 环境科学, 2019, 40(3): 1491-1503.
      XU G P, LI Y Q, SHEN Y Y, ZHANG D N, SUN Y J, ZHANG Z F, ZHOU L W, DUAN C Y.  Soil organic carbon distribution and components in different plant communities along a water table gradient in the Huixian karst wetland in Guilin[J]. Environmental Science, 2019, 40(3): 1491-1503.

    23. [23]

      NIE Y P, CHEN H S, WANG K L, DING Y L.  Rooting characteristics of two widely distributed woody plant species growing in different karst habitats of Southwest China[J]. Plant Ecology, 2014, 215(): 1099-1109. doi:

    24. [24]

      PAN F J, ZHANG W, LIU S J, LI D J, WANG K L.  Leaf N∶P stoichiometry across plant functional groups in the karst region of southwestern China[J]. Trees, 2015, 29(3): 883-892. doi:

    25. [25]

      GOUD E M, MOORE T R, ROULET N T.  Predicting peatland carbon fluxes from non-destructive plant traits[J]. Functional Ecology, 2017, 31(): 1824-1833. doi:

    26. [26]

      SRABANI D, BRIAN K R, KELLY L H, LEILAH K.  Lower mineralizability of soil carbon with higher legacy soil moisture[J]. Soil Biology and Biochemistry, 2019, 130(): 94-104. doi:

    27. [27]

      LANDI, ANDERSON D W, MERMUT A R.  Organic carbon storage and stable, isotope composition of soils along a grassland to forest environmental gradient in Saskatchewan[J]. Canadian Journal of Soil Science, 2003, 83(4): 405-414. doi:

    28. [28]

      MUKHOPADHYAY S, MASTO R E, YADAV A, GEORGE J, RAM L C, SHUKLA S P.  Soil quality index for evaluation of reclaimed coal mine spoil[J]. Science of the Total Environment, 2016, 542(): 540-550. doi:

    29. [29]

      刘景双, 杨继松, 于君宝, 王金达.  三江平原沼泽湿地土壤有机碳的垂直分布特征研究[J]. 水土保持学报, 2003, (3): 5-8. doi:
      LIU J S, YANG J S, YU J B, WANG J D.  Study on vertical distribution of soil organic carbon in wetlands Sanjiang Plain[J]. Journal of Soil and Water Conservation, 2003, (3): 5-8. doi:

    30. [30]

      白军红, 邓伟, 朱颜明, 栾兆擎, 张玉霞.  霍林河流域湿地土壤碳氮空间分布特征及生态效应[J]. 应用生态学报, 2003, 14(9): 1494-1498. doi:
      BAI J H, DENG W, ZHU Y M, LUAN Z Q, ZHANG Y X.  Spatial distribution characteristics and ecological effects of carbon and nitrogen of soil in Huolin River catchment wetland[J]. Chinese Journal of Applied Ecology, 2003, 14(9): 1494-1498. doi:

    31. [31]

      LU M, ZHOU X H, LUO Y Q, YANG Y H, FANG C M, CHEN J K, LI B.  Minor stimulation of soil carbon storage by nitrogen addition: A meta-analysis[J]. Agriculture, Ecosystems & Environment竞彩足球app, 2011, 140(): 234-244.

    32. [32]

      NEFF J C, TOWNSEND A R, GLEIXNER G, LEHMAN S.  Variable effects of nitrogen additions on the stability and turnover of soil carbon[J]. Nature, 2002, 419(): 915-917. doi:

    33. [33]

      程淑兰, 方华军, 马艳.  氮输入对森林土壤有机碳截存与损耗过程的影响[J]. 水土保持学报, 2007, 21(5): 82-85. doi:
      CHENG S L, FANG H J, MA Y.  Effects of nitrogen input on sequestration and depletion of organic carbon of forest soils[J]. Journal of Soil and Water Conservation, 2007, 21(5): 82-85. doi:

    34. [34]

      杨全, 陈志飞, 周俊杰, 赖帅彬, 简春霞, 王智, 徐炳成.  黄土丘陵区草地植被群落优势种叶片功能性状对氮磷添加的响应[J]. 应用生态学报, 2019, 30(11): 3697-3706.
      YANG Q, CHEN Z F, ZHOU J J, LAN S B, JIAN C X, WANG Z, XU B C.  Responses of leaf functional traits of dominant plant species in grassland communities to nitrogen and phosphorus addition in loess hilly-gully region[J]. Chinese Journal of Applied Ecology, 2019, 30(11): 3697-3706.

    35. [35]

      邵学新, 杨文英, 吴明, 蒋科毅.  杭州湾滨海湿地土壤有机碳含量及其分布格局[J]. 应用生态学报, 2011, 22(3): 658-664.
      SHAO X X, YANG W Y, WU M, JIANG K Y.  Soil organic carbon content and its distribution pattern in Hangzhou Bay coastal wetlands[J]. Chinese Journal of Applied Ecology, 2011, 22(3): 658-664.

    36. [36]

      周莉, 李保国, 周广胜.  土壤有机碳的主导影响因子及其研究进展[J]. 地球科学进展, 2005, 20(1): 99-105. doi:
      ZHOU L, LI B G, ZHOU G S.  Advances in controlling factors of soil organic carbon[J]. Advances in Earth Science, 2005, 20(1): 99-105. doi:

    37. [37]

      赵彦坤, 张文胜, 王幼宁, 李科学, 贾会珍, 李霞.  高pH对植物生长发育的影响及其分子生物学研究进展[J]. 中国生态农业学报, 2008, 16(3): 783-787.
      ZHAO Y K, ZHANG W S, WANG Y N, LI K X, JIA H Z, LI X.  Research progress in physiology and molecular biology of plant responses to high pH[J]. Chinese Journal of Eco-Agriculture, 2008, 16(3): 783-787.

    38. [38]

      张剑, 王利平, 谢建平, 赵庭伟, 曹建军.  敦煌阳关湿地土壤有机碳分布特征及其影响因素[J]. 生态学杂志, 2017, 36(9): 2455-2464.
      ZHANG J, WANG L P, XIE J P, ZHAO T W, CAO J J.  Distribution and influencing factors of soil organic carbon in Dunhuang Yangguan wetland[J]. Chinese Journal of Ecology竞彩足球app, 2017, 36(9): 2455-2464.

    39. [39]

      颜安, 王泽, 蒋平安, 温鹏飞.  土壤盐分对干旱区盐渍土壤碳垂直分布的影响[J]. 干旱区研究, 2017, 34(4): 770-774.
      YAN A, WANG Z, JIANG P A, WEN P F.  Effects of soil salinity on vertical distribution of soil carbon in saline soil in arid area[J]. Arid Zone Research, 2017, 34(4): 770-774.

    40. [40]

      王燕, 王兵, 赵广东, 郭浩, 马向前.  江西大岗山3种林型土壤水分物理性质研究[J]. 水土保持学报, 2008, 22(1): 151-153. doi:
      WANG Y, WANG B, ZHAO G D, GUO H, MA X Q.  Soil moisture physical characteristics of three forest types in Dagangshan Mountain in Jiangxi Province[J]. Journal of Soil and Water Conservation, 2008, 22(1): 151-153. doi:

    41. [41]

      吴琴, 尧波, 幸瑞新, 朱丽丽, 胡启武.  鄱阳湖典型湿地土壤有机碳分布及影响因子[J]. 生态学杂志, 2012, 31(2): 313-318.
      WU Q, RAO B, XING R X, ZHU L L, HU Q W.  Distribution pattern of soil organic carbon in Poyang Lake wetland and related affecting factors[J]. Chinese Journal of Ecology, 2012, 31(2): 313-318.

    42. [42]

      董颖, 耿玉清, 黄桂林, 李娜, 张超英.  青海湖流域沼泽和湿草甸表层土壤有机碳含量及其结构特征[J]. 湿地科学, 2019, 17(4): 478-484.
      DONG Y, GENG Y Q, HUANG G L, LI N, ZHANG C Y.  Organic carbon contents of surface soils in the marshes and wet meadows of Qinghai Lake Basin and their structural characteristics[J]. Wetland Science竞彩足球app, 2019, 17(4): 478-484.

    43. [43]

      吕国红, 周莉, 赵先丽, 贾庆宇, 谢艳兵, 周广胜.  芦苇湿地土壤有机碳和全氮含量的垂直分布特征[J]. 应用生态学报, 2006, 17(3): 384-389. doi:
      LYU G H, ZHOU L, ZHAO X L, JIA Q Y, XIE Y B, ZHOU G S.  Vertical distribution of soil organic carbon and total nitrogen in reed wetland[J]. Chinese Journal of Applied Ecology, 2006, 17(3): 384-389. doi:

    44. [44]

      马玉蕾, 王德, 刘俊民, 温小虎, 高猛, 邵宏波.  黄河三角洲典型植被与地下水埋深和土壤盐分的关系[J]. 应用生态学报, 2013, 24(9): 2423-2430.
      MA Y L, WANG D, LIU J M, WEN X H, GAO M, SHAO H B.  Relationships between typical vegetations, soil salinity, and groundwater depth in the Yellow River Delta of China[J]. Chinese Journal of Applied Ecology, 2013, 24(9): 2423-2430.

    45. [45]

      LI Y L, WANG L, ZHANG W Q, ZHANG S P, WANG H L, FU X H, LE Y Q.  Variability of soil carbon sequestration capability and microbial activity of different types of salt marsh soils at Chongming Dongtan[J]. Ecological Engineering, 2010, 36(12): 1754-1760. doi:

    46. [46]

      CHAMBERS L G, OSBORNE T Z, REDDY K R.  Effect of salinity-altering pulsing events on soil organic carbon loss along an intertidal wetland gradient: a laboratory experiment[J]. Biogeochemistry竞彩足球app, 2013, 115(1/3): 363-383.

    47. [47]

      刘秉儒, 杨阳, 陈林.  宁夏荒漠草原4种典型植物群落土壤活性有机碳垂直分布特征[J]. 草地学报, 2014, 22(5): 986-990. doi:
      LIU B R, YANG Y, CHEN L.  Distribution characteristics of soil labile organic carbon of four typical plant communities in desert steppe of Ningxia[J]. Acta Agrestia Sinica, 2014, 22(5): 986-990. doi:

    48. [48]

      SINGH G, BALA N, CHAUDHURI K K, MEENA R L.  Carbon sequestration potential of common access resources in arid and semi-arid regions of Northwestern India[J]. Indian Forester竞彩足球app, 2003, 129(): 859-864.

    49. [49]

      KADOVIC R, BELANOVIC S, OBRATOV-PETKOVIC D, BJEDOV I.  Soil organic carbon storage in moutain grasslands of the Lake Plateau at Mt. Durmitor in Montenegro[J]. Glasnik Šumarskog Fakulteta竞彩足球app, 2012, 106(): 113-128.

    50. [50]

      陈心桐, 徐天乐, 李雪静, 赵爱花, 冯海艳, 陈保冬.  中国北方自然生态系统土壤有机碳含量及其影响因素[J]. 生态学杂志, 2019, 38(4): 1133-1140.
      CHEN X T, XU T L, LI X J, ZHAO A H, FEN H Y, CHEN B D.  Soil organic carbon concentrations and the influencing factors in natural ecosystems of northern China[J]. Chinese Journal of Ecology, 2019, 38(4): 1133-1140.

    51. [51]

      李龙, 秦富仓, 姜丽娜, 姚雪玲.  赤峰市敖汉旗土壤有机碳含量的垂直分布及其影响因素[J]. 生态学报, 2019, 39(1): 345-354.
      LI L, QIN F C, JIANG L N, YAO X L.  Vertical distribution of soil organic carbon content and its influencing factors in Aaohan, Chifeng[J]. Acta Ecologica Sinica, 2019, 39(1): 345-354.

    1. [1]

      巩杰王合领钱大文孙朋谢余初高彦净赵彩霞 . 高寒牧区不同土地覆被对 土壤有机碳的影响 . 草业科学, 2014, 8(12): 2198-2204. doi: 

    2. [2]

      周国利程云湘马青青申波曲久田富常生华 . 牦牛放牧强度对青藏高原东缘高寒草甸群落结构与土壤理化性质的影响. 草业科学, 2019, 36(4): 1022-1031. doi: 

    3. [3]

      刘淑丽林丽张法伟杜岩功李以康郭小伟欧阳经政曹广民 . 放牧季节及退化程度对高寒草甸土壤有机碳的影响. 草业科学, 2016, 10(1): 11-18. doi: 

    4. [4]

      李小燕占玉芳田晓萍滕玉风鲁延芳 . 黑河流域中游湿地维管束植物区系. 草业科学, 2014, 8(4): 614-620.

    5. [5]

       草原畜牧业产业链利益联结机制影响因素研究. 草业科学, 2017, 11(12): 2591-2602. doi: 

    6. [6]

      刘忆轩李多才侯扶江 . 甘肃马鹿春秋季放牧对高寒草原土壤理化性质的影响. 草业科学, 2019, 36(2): 273-283. doi: 

    7. [7]

      薛超玉焦峰张海东汝海丽 . 黄土丘陵区弃耕地恢复过程中土壤与植物恢复特征. 草业科学, 2016, 10(3): 368-376. doi: 

    8. [8]

      旦增塔庆白玛嘎翁多吉顿珠拉巴 . 围封年限对西藏高寒草甸植被特征与土壤养分的影响. 草业科学, 2018, 12(1): 10-17. doi: 

    9. [9]

      冯锦崔东孙国军刘海军 . 新疆土壤有机碳与土壤理化性质的相关性. 草业科学, 2017, 11(4): 692-697. doi:  竞彩足球app

    10. [10]

      孙涛马全林贾志清李银科王耀琳张晓娟马俊梅 . 甘肃景电灌区次生盐碱地枸杞土壤有机碳库的动态模拟. 草业科学, 2015, 9(11): 1757-1766. doi: 

    11. [11]

      李硕姜哲浩张德罡聂中南陈建纲胡新振陈璐袁子茹任灵 . 青海省祁连县高寒草甸草原土壤有机碳分布特征. 草业科学, 2016, 10(8): 1469-1475. doi: 

    12. [12]

      王龙刚蒋成芳刘兴元张文娥王自奎李峻成沈禹颖 . 陇东旱塬苹果果园农户生草意愿及影响因素分析. 草业科学, 2017, 11(12): 2584-2590. doi: 

    13. [13]

      张燕魏祎梅魏茂宏李琳 . 甘肃黄河三峡湿地资源调查. 草业科学, 2016, 10(8): 1509-1517. doi: 

    14. [14]

      杜富林石双杜娅茹 . 内蒙古牧区牧户委托放牧行为及影响因素实证研究. 草业科学, 2016, 10(10): 2136-2143. doi:  竞彩足球app

    15. [15]

      谢泽宇罗珠珠李玲玲蔡立群张仁陟牛伊宁赵靖静 . 黄土高原不同粮草种植模式土壤碳氮及土壤酶活性. 草业科学, 2017, 11(11): 2191-2199. doi:  竞彩足球app

    16. [16]

      冯峰贡保草牛克昌 . 不同放牧模式下高原鼠兔密度与高寒植被和土壤的关系. 草业科学, 2019, 36(11): 2915-2925. doi:  竞彩足球app

    17. [17]

      秦建蓉马红彬王丽虎巧能沈艳许冬梅 . 宁夏荒漠草原植物群落特征对不同轮牧开始时间的响应. 草业科学, 2016, 10(5): 963-971. doi:  竞彩足球app

    18. [18]

      魏伟郝媛媛张娟刘惠峰颉耀文 . 疏勒河流域植物群落梯度变化及景观异质性. 草业科学, 2014, 8(11): 2050-2059. doi: 

    19. [19]

      陆颖王保林沈艳 . 宁夏典型草原区不同退耕年限草地植物群落及优势植物C、N、P化学计量特征. 草业科学, 2019, 36(5): 1200-1206. doi:  竞彩足球app

    20. [20]

      徐赟罗久富周金星王丽娜杨梅香 . 青藏铁路沿线高寒草甸区次生群落特征及种间关联性. 草业科学, 2020, 37(1): 41-51. doi: 

  • 竞彩足球app

    图 1  竞彩足球app 研究区样地分布图

    Figure 1.  Sample distribution map of the study area

    图 2  DCA群落类型分类

    Figure 2.  竞彩足球app Classification of DCA community types

    图 3  不同植物群落土壤有机碳

    Figure 3.  竞彩足球app Soil organic carbon of different plant communities

    图 4  竞彩足球app 土壤理化性质、植物群落特征与土壤有机碳相关性分析

    Figure 4.  竞彩足球app Correlation analysis of soil physical and chemical properties, plant community characteristics and soil organic carbon

    图 5  土壤有机碳与土壤理化性质、植物群落特征相互关系的结构方程模型

    Figure 5.  竞彩足球app Structural equation model of the relationship between soil organic carbon, soil characteristics and plant community characteristics

    竞彩足球app_竞彩足球app链接 yabo官网_yabo国际-欢迎您 亚搏在线官网_亚搏全站app下载- 网页版 亚搏体育注册_亚搏网址-官方推荐 亚搏app_亚搏app下载安装>> 首页 yabo入口_yabo网页-【全网唯一大品牌】
  • <tfoot id='koahn'></tfoot>

          <legend id='koahn'><style id='koahn'><dir id='koahn'><q id='koahn'></q></dir></style></legend>
          <i id='koahn'><tr id='koahn'><dt id='koahn'><q id='koahn'><span id='koahn'><b id='koahn'><form id='koahn'><ins id='koahn'></ins><ul id='koahn'></ul><sub id='koahn'></sub></form><legend id='koahn'></legend><bdo id='koahn'><pre id='koahn'><center id='koahn'></center></pre></bdo></b><th id='koahn'></th></span></q></dt></tr></i><div id='koahn'><tfoot id='koahn'></tfoot><dl id='koahn'><fieldset id='koahn'></fieldset></dl></div>

              <bdo id='koahn'></bdo><ul id='koahn'></ul>

              1. 加载中
              2. 图(5)
                计量
                • PDF下载量:  15
                • 文章访问数:  1982
                • HTML全文浏览量:  276
                文章相关
                • 通讯作者:  赵锐锋,
                • 收稿日期:  2018-11-14
                • 网络出版日期:  2019-03-26
                • 刊出日期:  2019-05-01
                通讯作者: 陈斌,
                • 1. 

                  竞彩足球appSHENYANGHUAGONGDAXUECAILIAOKEXUEYUGONGCHENGXUEYUAN SHENYANG 110142

                1. 本站搜索
                2. 百度学术搜索
                3. 万方数据库搜索
                4. CNKI搜索

                /

                返回文章
                竞彩足球app_竞彩足球app链接 yabo官网_yabo国际-欢迎您 亚搏在线官网_亚搏全站app下载- 网页版 亚搏体育注册_亚搏网址-官方推荐 亚搏app_亚搏app下载安装>> 首页 yabo入口_yabo网页-【全网唯一大品牌】